- 產(chǎn)品描述
新孢子蟲(chóng)IgG免疫熒光試劑盒(檢測(cè)狗)
Neospora caninum IgG IFA Kit
廣州健侖生物科技有限公司
主要用途:用于檢測(cè)狗血清中的新孢子蟲(chóng)IgG抗體
產(chǎn)品規(guī)格:12 孔/張,10 張/盒
主要產(chǎn)品包括:包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲(chóng)病、立克次體、果氏巴貝西蟲(chóng)、馬焦蟲(chóng)、牛焦蟲(chóng)、利什曼蟲(chóng)、新包蟲(chóng)、弓形蟲(chóng)、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細(xì)小病毒等病原微生物的 IFA、MIF、ELISA試劑。
新孢子蟲(chóng)IgG免疫熒光試劑盒(檢測(cè)狗)
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無(wú)形體、蜱蟲(chóng)、恙蟲(chóng)、利什曼原蟲(chóng)、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲(chóng)病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
JL-FL54 | 牛雙芽巴貝西蟲(chóng)免疫熒光玻片 | babesia bigemina IFA Substrate slide |
JL-FL55 | 牛雙芽巴貝西蟲(chóng)免疫熒光試劑盒 | babesia bigemina IFA Kit |
JL-FL56 | 牛巴貝西蟲(chóng)免疫熒光玻片 | babesia bovis IFA Substrate slide |
JL-FL57 | 牛巴貝西蟲(chóng)免疫熒光試劑盒 | babesia bovis IFA Kit |
JL-FL58 | 駑巴貝西蟲(chóng)免疫熒光玻片 | babesia caballi IFA Substrate slide |
JL-FL59 | 駑巴貝西蟲(chóng)免疫熒光試劑盒 | babesia caballi IFA Kit |
JL-FL60 | 馬泰勒蟲(chóng)免疫熒光玻片 | theileria equi IFA Substrate slide |
JL-FL61 | 馬泰勒蟲(chóng)免疫熒光試劑盒 | theileria equi IFA Kit |
JL-FL62 | 利什曼蟲(chóng)IgG免疫熒光試劑盒 | Leishmania IgG IFA Kit |
JL-FL63 | Neospora caninum IgG IFA Kit | |
JL-FL64 | 新孢子蟲(chóng)IgG免疫熒光試劑盒(檢測(cè)馬) | Neospora caninum IgG IFA Kit |
JL-FL65 | 貓杯狀病毒IgG免疫熒光玻片 | Feline Calicivirus IgG IFA Substrate slide |
JL-FL66 | 貓冠狀病毒IgG免疫熒光玻片 | Feline Coronavirus IgG IFA Substrate slide |
JL-FL67 | 貓皰疹病毒IgG免疫熒光玻片 | Feline Herpesvirus IgG IFA Substrate slide |
JL-FL68 | 犬瘟病毒IgG免疫熒光玻片 | Canine Distemper IgG IFA Substrate slide |
JL-FL69 | 犬細(xì)小病毒IgG免疫熒光玻片 | Canine Parvovirus IgG IFA Substrate slide |
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化】
狡猾的寄生蟲(chóng)在其生命周期中常常經(jīng)歷顯著的外形變化,讓它們能夠適應(yīng)不同的生活環(huán)境并且繁盛起來(lái)。但是發(fā)表在《細(xì)胞生物學(xué)雜志》(The Journal of Cell biology)的一項(xiàng)研究發(fā)現(xiàn),這些變形看上去可能沒(méi)有看上去的那么困難。
非洲的“昏睡病”是一種由稱為布氏錐蟲(chóng)(Trypanosoma brucei)的由采采蠅傳播的寄生蟲(chóng)物種導(dǎo)致的疾病。這種單細(xì)胞寄生蟲(chóng)擁有一個(gè)內(nèi)部?jī)?chǔ)藏著這個(gè)細(xì)胞的線粒體DNA的動(dòng)基體以及對(duì)于細(xì)胞運(yùn)動(dòng)具有關(guān)鍵作用的一個(gè)伸出的鞭毛。布氏錐蟲(chóng)在其發(fā)育周期經(jīng)歷了外形和構(gòu)成的重大變化。在一個(gè)稱為錐鞭毛體(trypomastigote)的階段,動(dòng)基體位于核之后,而幾乎鞭毛的所有部分都與細(xì)胞相連。另一方面,在短膜蟲(chóng)期(epimastigote)階段,動(dòng)基體在核之前,而且只有鞭毛的一部分與細(xì)胞相連。布氏錐蟲(chóng)的近親有許多不同的形狀,這表明這些寄生蟲(chóng)在進(jìn)化中也改變了它們的形態(tài)。
當(dāng)來(lái)自英國(guó)牛津大學(xué)的科研人員減少了布氏錐蟲(chóng)錐鞭毛體的一種稱為ClpGM6的蛋白質(zhì)表達(dá)的時(shí)候,這個(gè)細(xì)胞切換到了一種類(lèi)似于短膜蟲(chóng)期的形態(tài)。動(dòng)基體接近核或者在其之前,而且鞭毛的一長(zhǎng)部分伸出了細(xì)胞。這些寄生蟲(chóng)與短膜蟲(chóng)期不一樣——它們?nèi)狈σ?jiàn)于這個(gè)生命階段的一種*的表面蛋白——但是它們有能力存活并且繁殖超過(guò)40代。
ClpGM6位于鞭毛的附著區(qū),而且很可能有助于把鞭毛與細(xì)胞體連接。失去ClpGM6導(dǎo)致鞭毛的幫助確定細(xì)胞尺寸和形狀的附著區(qū)縮短。這項(xiàng)研究提出,在生命周期中以及在寄生蟲(chóng)進(jìn)化中出現(xiàn)的顯著形態(tài)變化可能是由于幾個(gè)關(guān)鍵蛋白質(zhì)層次上的調(diào)整造成的,而不是源于寄生蟲(chóng)蛋白質(zhì)或DNA內(nèi)容的大量變化。
蛋白質(zhì)是來(lái)自DNA的分子馬達(dá),執(zhí)行對(duì)生命*的任務(wù),它們是萊斯大學(xué)理論生物物理學(xué)研究中心(CTBP)的José Onuchic及其同事研究的主要焦點(diǎn)。研究人員使用他們的能量全景圖理論(energy landscape theory),來(lái)確定一段未折疊的氨基酸鏈zui終成為一種功能蛋白所采用的途徑。這涉及到,計(jì)算鏈中每一個(gè)氨基酸的結(jié)合模式以及折疊進(jìn)行中周?chē)h(huán)境的影響。
Cunning parasites often experience significant changes in shape throughout their life cycle, allowing them to adapt to different living environments and flourish. But a study published in The Journal of Cell biology found that these distortions may not seem so difficult.
Sleeping sickness in Africa is a disease caused by a parasitic species transmitted by tsetse flies called Trypanosoma brucei. The unicellular parasite has a moving body that holds the mitochondrial DNA of the cell inside, and a protruding flagella that is crucial for cell motility. Trypanosoma brucei undergoes significant changes in shape and composition during its developmental cycle. In a phase called trypomastigote, the motile matrix is ??behind the nucleus, and almost all parts of the flagellum are attached to the cell. On the other hand, in the epimastigote stage, the motile matrix precedes the nucleus, and only a portion of the flagella is attached to the cell. The relatives of Trypanosoma brucei have many different shapes, suggesting that these parasites also changed their morphology during evolution.
When researchers from the University of Oxford in the United Kingdom reduced the protein expression of ClpGM6, a member of the Trypanosoma brucei conidia, the cell switched to a morphology similar to the meiosis stage. The moving body approaches the nucleus or before it, and a long portion of the flagellum protrudes out of the cell. These parasites are not the same as the meiosis - they lack a unique surface protein found at this stage of their life - but they are capable of surviving and breeding for more than 40 generations.
ClpGM6 is located in the attachment region of the flagella and probably helps to connect the flagella to the cell body. Loss of ClpGM6 Leads to Flagella Help to Determine the Attachment Zone for Cell Size and Shape Shortens. This study suggests that significant morphological changes that occur during life cycles and during parasite evolution may be due to adjustments at several key protein levels rather than a substantial change in parasite proteins or DNA content.
Proteins, a molecular motor derived from DNA, perform mission-critical tasks that are the main focus of José Onuchic and his colleagues at the Center for Theoretical Biophysics (CTBP) at Rice University. Researchers use their energy landscape theory to determine the pathway by which an unfolded amino acid chain eventually becomes a functional protein. This involves calculating the mode of binding for each amino acid in the chain and the impact of the environment in which the fold is in progress.